Räkna med tal i decimalform

Ansvarig lärare: Andreas Backvall

Projektet genomförs under veckorna 2 – 7

 

Räkna med tal i decimalform

Frågeställning och följdfrågor

Vad möter vi för matematik i vardagen?
• Hur avrundar vi tal i olika sammanhang?
• Vad har man för nytta av överslagsräkning?
• Vilka metoder finns för överslagsräkning med de fyra räknesätten?
• Vilka metoder finns för att räkna med tal i decimalform med de fyra räknesätten?
• Hur viktigt är det med rimlighetsbedömning?

 

Övergripande mål med anknytning till matematik från LGR11 2.2

Skolan ska ansvara för att varje elev efter genomgången grundskola

  • kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet,
  • kan lösa problem och omsätta idéer i handling på ett kreativt sätt,
  • kan lära, utforska och arbeta både självständigt och tillsammans med andra och känna tillit   till sin egen förmåga,
  • kan använda modern teknik som ett verktyg för kunskapssökande, kommunikation, skapande och lärande

 

Förankring i kursplanens syfte

Undervisningen i ämnet matematik ska syfta till att eleverna utvecklar kunskaper om matematik och matematikens användning i vardagen och inom olika ämnesområden. Undervisningen ska bidra till att eleverna utvecklar intresse för matematik och tilltro till sin förmåga att använda matematik i olika sammanhang. Se mer: http://www.skolverket.se/laroplaner-amnen-och-kurser/grundskoleutbildning/grundskola/matematik

Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att

  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
  • använda och analysera matematiska begrepp och samband mellan begrepp,
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.

 

Centralt innehåll från kursplanen

Taluppfattning och tals användning

  • Rationella tal och deras egenskaper.
  • Positionssystemet för tal i decimalform.
  • Tal i bråk- och decimalform och deras användning i vardagliga situationer.
  • Centrala metoder för beräkningar med naturliga tal och enkla tal i decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digitala verktyg. Metodernas användning i olika situationer.
  • Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga situationer.

Problemlösning

  • Strategier för matematisk problemlösning i vardagliga situationer.

 

Kunskapskrav, aktuella delar av matrisen

Eleven kan lösa enkla problem i elevnära situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med anpassning till problemets karaktär.

Eleven beskriver tillvägagångssätt på ett i huvudsak fungerande sätt och för till viss del underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt.

Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.

Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt.

I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.

Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då bilder och andra matematiska uttrycksformer med viss anpassning till sammanhanget.

I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som till för resonemangen framåt.

 

Hur?

Hur ska vi arbeta?

Lyssnar aktivt på genomgångar, diskuterar, reflekterar

Vi varierar arbetet både praktiskt, teoretiskt, enskilt, par och i grupp. Vi tränar rutinuppgifter på olika svårighetsnivå i matematikboken Beta Matematik. Vi går igenom och tränar på olika sätt att lösa problem – ritar bilder.

Vi försöker lyfta gruppens arbete genom att samarbeta och lära av varandra med olika kooperativa arbetssätt. Vi arbetar mycket tillsammans för att lära av varandra. Vi tränar på att redovisa uträkningar skriftligt och att skriva tydligt i räknehäftet. Vi tränar på muntligt beskrivande av matematik och på att resonera rimligt eller inte kring olika lösningar. Ett tillfälle i veckan arbetar vi med problemlösning i grupper. Vi arbetar även med programmering ett tillfälle i veckan.

 

Hur ska vi redovisa och hur kommer bedömningen att ske?

Vi arbetar med olika korta ”check-koller” och diagnoser. Eleverna rättar även själva sina uppgifter med hjälp av facit och får på så sätt själva syn på styrkor och repetitionsområden.

Att delta vid diskussioner och praktiska övningar är viktigt för då blir de skriftliga resultaten mindre betydande. Det är viktigt att försöka bedöma vad eleverna kan när de lyckas visa det – men alla har rätt att både träna massor och göra fel många gånger innan kunskaperna bedöms. Bedömning sker även löpande genom undervisningen då vi många lektioner delar upp klassen i mindre grupper som får sitta med Andreas och diskutera matematik. I slutet av temat kommer vi dessutom att ha ett skriftligt prov.

 

Varför?

Sammanhang och aktualitet

Kunskaper i matematik ger ett bra sätt att i framtiden kunna välja ett lockande yrke, kunna sköta sin privatekonomi (handla, arbeta, hyra bostad) och kunna tolka samhället runtomkring (läsa av tabeller, diagram) och för att kunna påverka sin omgivning.

 

Så här synliggörs Lemshagas vision och pedagogiska profil i projektet

Vi satsar mycket på ett kreativt arbetssätt med många både praktiska och lekfulla inslag och tror på att tankens kraft i gemensamt arbete kommer föda kunskaper om och förståelse för matematikens användbarhet och betydelse. Med ett varierat arbetssätt hoppas vi nå ett ökat intresse och även självförtroende i att lyckas. Att vi genom ett tydligt arbete med kooperativa metoder når längre tillsammans. Genom att knyta an matematikuppgifterna till elevernas vardag vill vi skapa ett intresse och sammanhang som underlättar förståelse.

 

Utvärdering

Utvärdering av projektet, tillsammans med eleverna.

Utvärdering av projektet sker under arbetets gång samt efter avslutat projekt tillsammans med eleverna, både muntligt i diskussion och med hjälp av olika typer av “exit-tickets”.